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Fully developed two-dimensional salt-finger convection is characterized by the
appearance of coherent dipolar eddies which carry relatively fresh and cold fluid
upward and salty and warm fluid downward. Such structures – the double-diffusive
modons – are prevalent in the regime in which density stratification is close to neutral
and the salt-finger instability is extremely vigorous. The structure and translation
velocities of modons are discussed in terms of the asymptotic expansion in which
the background density ratio approaches unity. It is argued that the vertical salt flux
is driven primarily by double-diffusive modons, which makes it possible to derive
explicit expressions for the mixing rates of temperature and salinity as a function of
their background gradients. Predictions of the proposed mixing model are successfully
tested by direct numerical simulations.

1. Introduction
Geophysical fluid dynamics has never suffered from the lack of fascinating physical

ideas and sleek mathematical solutions. However, even in the glamorous field of the
twentieth century earth sciences some theories stand out as particularly elegant and
insightful. Two of my personal favourites are the theory of double-diffusion (Stern
1960) and the model of isolated dipolar eddies known as ‘modons’ (Stern 1975a).

Double-diffusion is the instability of a stratified fluid at rest whose density is
determined by two components diffusing at different rates. Stern (1960) demonstrated
that such a configuration can be unstable even if the density of the fluid is increasing
downwards. The resulting double-diffusive convection has long been recognized as
a significant, and in many cases dominant, mixing process in the ocean. In the
subtropical oceans, hot salty water is often located above the cold and fresh. Thus,
the faster diffuser (temperature T ) is stabilizing and the slower diffuser (salinity S)
is destabilizing, leading to the salt-fingering form of double-diffusive convection. The
modon solution was introduced (Stern 1975a; Larichev & Reznik 1976) to describe a
closely packed vortex pair travelling together as a single entity – the oceanographically
relevant extension of the Lamb dipole (Lamb 1895). While originally developed to
explain the oceanographic phenomena, both double-diffusion and modon theories
proved to be relevant for many other physical systems. Double-diffusion finds
applications in chemistry, geology, and metallurgy, whereas the modon is a convenient
prototype of structures commonly observed in meteorology, astrophysics, and plasma
physics. In this paper we argue that the modon-type structures also emerge in the
fully developed double-diffusive instability, and can play a key role in the vertical
mixing of heat and salt.

To be specific, our discussion is focused on the salt-finger regime of double-diffusion;
basic vertical gradients of temperature and salinity (T̄z, S̄z) are positive. The condition
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for salt fingering (Stern 1960) is

1 < Rρ < 1/τ,

where Rρ = αT̄z/(βS̄z) is the density ratio, (α, β) are the expansion/contraction
coefficients of heat and salt, and τ = kS/kT is the diffusivity ratio of salt and heat.
Numerical simulations (Shen & Veronis 1997; Merryfield & Grinder 1999; Stern,
Radko & Simeonov 2001, Stern & Simeonov 2005) indicate that fingering convection
can take very different forms, depending on the governing parameters. If Rρ → 1/τ ,
the system is close to a point of marginal instability and salt fingers appear in
the form of narrow vertically oriented filaments. The flow is largely laminar and
the vertical temperature and salinity fluxes are weak. The magnitude and dynamics
of salt fingers in this limit can be explained (Radko & Stern 1999, 2000) using
conventional techniques of weakly nonlinear instability theory. Applicability of these
methods, however, becomes questionable when Rρ is far from the point of marginal
instability, the situation which is generally realized in the oceanic double-diffusion
(1 <Rρ < 3 and 1/τ ∼ 100). While promising attempts have been made (Balmforth
et al. 2006) to formulate explicit models using the upper bound theory, accurate
analytical description of double-diffusive convection for low values of Rρ is still
lacking.

The focus of our study is on the limit when Rρ is close to unity and the
background density is nearly uniform. The pattern of salt fingers in this regime
changes dramatically. For Rρ → 1+, the flow becomes highly turbulent and the vertical
temperature and salinity fluxes greatly increase. The primary fastest growing instability
is represented by the regular, exponentially amplifying structure – the elevator mode –
regardless of Rρ . However, such columnar structures cannot survive because of the
secondary super-exponential instabilities, which become particularly active at low
density ratios (Stern & Simeonov 2005). Long vertical salt fingers break into isolated
round blobs. Sinking blobs carry warm and salty fluid downward whereas rising
blobs are relatively cool and fresh. The resulting exchange of fluid provides an
efficient mechanism for the vertical transport of heat and salt. Numerical solutions
in this paper reveal that blobs consist of a roughly symmetric vortex pair; they
propagate significant distances while preserving their shape and contain a region of
trapped fluid. All these features are familiar to oceanographers – they fit perfectly
the classical description of a modon. Of course, modons are usually discussed in the
context of mesoscale (∼100 km) dynamics, where they represent the horizontal pattern
of circulation in isolated dipolar eddies. However, as we show here, they can also
serve as an adequate conceptual model for the vertical structure of fully developed
two-dimensional (x,z) salt fingers on scales of centimetres. Thus, the propagating
dipolar structures in fully developed salt-finger flow will be hereafter referred to as
double-diffusive modons.

Our study attempts to describe the structure and dynamics of double-diffusive
modons analytically, by focusing on the asymptotic limit Rρ → 1+. The proposed
similarity solution is characterized by the streamfunction field which is dominated by
the unit azimuthal wavenumber (m = 1) component. The theoretical significance of
double-diffusive modons is related to their preferred propagation velocity and size,
which are uniquely determined by the background density ratio. We assume and
subsequently verify that the salt-finger field can be adequately represented by an
array of rising and sinking double-diffusive modons – the microscale counterpart of
Stern’s (1975a) ‘modon-sea’ model. This assumption makes it possible to formulate
a simple phenomenological model of equilibrium salt-finger convection which offers



The double-diffusive modon 61

explicit expressions for the key mixing characteristics, such as the vertical heat/salt
fluxes and the kinetic energy dissipation rate.

Before discussing the vertical mixing driven by double-diffusive modons, it should
be emphasized that our model describes only the local fluxes and their dependence
on local T –S gradients; we are concerned here with spatial scales comparable to
(or less than) the characteristic salt-finger width. As argued in Stern et al. (2001),
these are the ‘small domain’ flux–gradient laws and inclusion of much greater scales
in the model may reveal their secondary instabilities. The large-scale instabilities,
in turn, can modify the uniform background stratification (Radko 2003, 2005),
spontaneously generating stepped structures known as thermohaline staircases. These
effects, however, are beyond the scope of this paper; our primary goal is to formulate
a physically based local parameterization of fluxes for Rρ → 1+.

This paper is set out as follows. In § 2 we perform a set of preliminary two-
dimensional numerical experiments, focusing our inquiry on structure and dynamics
of the coherent dipolar eddies – the double-diffusive modons – in the limit Rρ → 1+.
The major characteristics of the simulated modons are rationalized by a formal

asymptotic theory of § 3 in which ε =
√

1 − R−1
ρ is small. The proposed model for the

translation speed and T –S anomalies of double-diffusive modons provide a physically
based means to calculate the magnitude and dependences of the vertical mixing
rates of heat and salt (§ 4). In § 4 we also revisit the direct numerical simulations to
systematically test the mixing theory for small finite values of ε. We summarize and
conclude in § 5.

2. Preliminary considerations
2.1. Numerical simulations

Following Radko & Stern (1999), we separate the temperature and salinity fields into
the basic state (T̄ , S̄), representing a uniform vertical gradient, and a departure (T , S)
from it. The two-dimensional Boussinesq equations of motion are expressed in terms
of T and S as

∂

∂t
∇2ψ + J (ψ, ∇2ψ) = g

∂

∂x
(αT − βS) + υ∇4ψ,

∂T

∂t
+ J (ψ, T ) +

∂ψ

∂x

∂T̄

∂z
= kT ∇2T ,

∂S

∂t
+ J (ψ, S) +

∂ψ

∂x

∂S̄

∂z
= kS∇2S,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

where υ is the molecular viscosity, kT , kS are the diffusivities of heat and salt, ψ is the
sreamfunction, (α, β) are the expansion/contraction coefficients of the linear equation
of state, and

J (a, b) =
∂a

∂x

∂b

∂z
− ∂a

∂z

∂b

∂x

is the Jacobian.
We assume periodic boundary conditions for T , S and ψ in x and z and examine

the resulting solutions. The system (1) is characterized by a set of integral invariants.
Multiplying the temperature, salinity and vorticity equations in (1) by T , S and ψ

respectively, and integrating the resulting equations over the doubly-periodic domain
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and in time (e.g. Stern 1975b), we arrive at

〈wT 〉∂T̄

∂z
= kT 〈|∇T |2〉, (2a)

〈wS〉∂S̄

∂z
= kS〈|∇S|2〉, (2b)

g〈wβS〉 − g〈wαT 〉 = υ〈|∇ψ |2〉, (2c)

where 〈. . .〉 denotes the space and time average; (u, w) = (−∂ψ/∂z, ∂ψ/∂x) are the
velocity components. Equations (2a, b) imply that the production of thermal and
haline variances is balanced – in a statistically steady state – by their molecular
dissipation. Equation (2c) states that the difference between the potential energy lost
by the salt component and the energy gained by the thermal stratification is converted
into kinetic energy and ultimately dissipated by molecular viscosity. Other quantities
of interest are the flux ratio

γ =
〈wαT 〉
〈wβS〉 , (3)

which has to be less than unity to satisfy the principle of energy conservation, and
the Nusselt number

Nu =
〈wT 〉

−kT ∂T̄ /∂z
, (4)

the ratio of the vertical eddy and molecular fluxes of heat.
The key non-dimensional numbers governing the evolution of system (1) are the

Prandtl number Pr = υ/kT , the diffusivity ratio τ = kS/kT , and the background density
ratio Rρ . As mentioned earlier, we are concerned here with the local flux–gradient
laws. We assume that, in the absence of large-scale structures, the boundary conditions
have a minor influence on the interior circulation. Thus, fluxes are independent of the
non-dimensional parameters related to the domain size (e.g. the Rayleigh number).
The local flux–gradient laws are commonly used to parameterize the effects of salt
fingering on the oceanic circulation (e.g. Kunze 2003) and attempts have been made
to validate the concept of an ‘unbounded T –S gradient’. For instance, Radko & Stern
(1999) examined the sensitivity of salt-finger fluxes to the domain height (H ). A series
of numerical simulations with periodic boundary conditions, in which H was varied
by an order of magnitude, resulted in virtually no systematic change in the fluxes.†
These calculations emphasized the importance of the local gradients in controlling
the salt-finger temperature and salinity transport. Of course, before applying the flux–
gradient laws to double-diffusive systems, each case should be examined with caution
to ensure that there is enough scale separation between the background patterns and
salt fingers to justify the “unbounded T –S gradient” model.

To gain a preliminary understanding of the unbounded salt-finger system and
its dependence on (Rρ, τ, Pr), equations (1) were solved numerically using a fully
dealiased pseudospectral method described in Stern & Radko (1998). In the following
calculation, we use a diffusivity ratio of τ = 1/3 which is higher than the heat/salt value
(τ = 1/100). This choice is dictated by numerical convenience – otherwise it becomes

† We note that the double-diffusive flux laws are very different from those in turbulent convection,
where transport is always controlled by the Rayleigh number. The difference is attributed to the
distinct range of spatial scales of salt fingers, which permits their scale separation from the
background large-scale patterns.
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necessary to resolve the very small scales set by dissipation of salt. Nevertheless,
as discussed in Stern et al. (2001), such a modification is not expected to alter the
fundamental physics and dynamics of salt fingering. The Prandtl number is Pr= 7,
and the numerical experiment (figure 1a) was performed with the overall density ratio
of Rρ = 1.8. The size of the computational domain corresponds to 10 × 10 fastest
growing (on the basic gradient) finger wavelengths (d). The flow was resolved by a
uniform mesh with (Nx × Nz) = (1024 × 1024) elements, and the model was initialized
from rest by a small-amplitude random computer-generated initial (T , S) distribution.
After a few characteristic growth periods, active statistically steady double-diffusive
convection was established. Figure 1(a) shows the instantaneous salinity field which
exhibits typical signatures (e.g. Stern et al. 2001) of a fully developed field of two-
dimensional salt fingers. The Nusselt number, measuring the intensity of salt fingering,
is Nu= 7.1.

Figure 1(b) shows the numerical experiment performed with the density ratio
Rρ = 1.2; as previously, (τ, Pr) = (1

3
, 7) and the computational domain resolves ten

fastest growing finger wavelengths in x and z. However a visual comparison of the
two experiments in figure 1 reveals that the pattern of salt fingering at low density
ratio is much more complex and disorganized. The fully developed temperature field
in figure 1b exhibits a much wider range of spatial scales and the Nusselt number
increases to Nu =77. In addition to its space–time complexity, the Rρ → 1 regime
is also characterized by the appearance of coherent dipolar eddies (double-diffusive
modons) which translate vertically while roughly preserving their form and T –S

anomalies. One of the modons is shown in figure 2 which presents an enlarged view
of the small square area marked in figure 1(b). The patterns of temperature and
salinity in figures 2(a, b) indicate that the modon is roughly circularly symmetric;
the T –S anomalies reach their maximum values at its centre and reduce to zero
at the edge. As indicated by the distribution of vorticity in figure 2(c), the interior
circulation consists of two symmetric closely packed counter-rotating patches – hence
the term double-diffusive modon. Vorticity is also spatially localized, reducing to zero
towards the modon edge. The velocity distribution in the modon’s interior is shown
in figure 2(d).

2.2. Spatial scales of fully developed salt fingering

A well-documented property of salt fingering is related to the strong dependence
of temperature and salinity fluxes on the density ratio (see the reviews of Kunze
2003, and Schmitt 2003, for a summary of laboratory, numerical, and observational
flux measurements). It is particularly relevant for our discussion to emphasize the
extremely high values of the Nusselt number (Nu) for the density ratio close to
one. Rρ = 1 corresponds to a homogeneous background density distribution – the
boundary between salt fingering and top-heavy convection. Thus, for Rρ approaching
unity, the background density gradient weakens and becomes ineffective in limiting
the vertical eddy transport, causing Nu to increase dramatically. These tendencies will
be rationalized by the analytical solutions in this paper (§ 4), which suggest that the
Nusselt number approaches infinity for Rρ → 1+.

The condition

Nu � 1 for Rρ → 1+ (5)

has important implications for the spatial scales of salt fingers. The scale of the
primary salt finger instability – the fastest growing salt-finger width (d) – remains
finite for Rρ → 1. However, the flow field in this limit develops a wide range of
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(b)

z
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Figure 1. Instantaneous salinity fields for the numerical experiments with (a) Rρ = 1.8 and

(b) Rρ = 1.2. In both cases τ = 1
3

and Pr= 7. Red colour corresponds to high values of S and
low values are shown in blue. Note the appearance of coherent isolated plumes in (b).

smaller scales: figure 1(b) (Rρ = 1.2) reveals the presence of eddies with dimensions
considerably less than d .

The appearance of small scales in the low-density-ratio regime can be rationalized
by the following argument, not unlike that of classical turbulence theory. Suppose for



The double-diffusive modon 65
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Figure 2. An enlarged view of the square area marked in figure 1(b) which contains a
well-defined double-diffusive modon. Presented are (a) temperature, (b) salinity, (c) vorticity,
and (d) velocity fields. Red colour corresponds to positive values and negative values are
shown in blue.

a moment that all relevant scales in the Rρ → 1 limit are comparable to the fastest
growing finger width d . Since the amplitudes of temperature and velocity increase
for density ratio approaching unity, the nonlinear advection term J (ψ, T ) inevitably
exceeds the diffusive term kT ∇2T :

J (ψ, T )

kT ∇2T
∼ {v}{T }

kT {T }/d ∼ Nu, (6)

where {v} and {T } are the scales of the velocity and temperature. In view of (5) and
(6), one is naively tempted to neglect the diffusive term for Rρ → 1, which immediately
leads to a paradox. According to equation (2a), it is the diffusive term that balances
the temperature flux associated with active salt fingering; if the diffusive term is
negligible, there is nothing to balance the production of thermal variance. The logical
resolution of this paradox is that our initial assumption is not valid – not all scales
are of the order d . The secondary instabilities of the primary salt fingers generate
smaller scales, which in turn transfer motion to even smaller scales, and so forth,
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down to the microscales λT , λS 	 d at which heat and salt are efficiently dissipated by
the molecular diffusivity. This process is a direct counterpart of the cascade of energy
and tracer variance to smaller and smaller scales in turbulence problems. However,
there is one feature which distinguishes the salt fingering at Rρ → 1 from the more
common forms of turbulence: the absence of the upscale cascade of energy (Batchelor
1969). Even though all our numerical simulations (figure 1) are two-dimensional, they
reveal no evidence of the spontaneous generation of large-scale structures.

A question that naturally arises at this stage is what determines the dissipative
scale. Following the conventional argument of turbulence theory (e.g. Monin &
Ozmidov 1985), we assume that the cascade of T –S variances to small scales and
their dissipation scales are controlled by the supply of energy at the scale of primary
instability (d). The balance of energy includes three major components: the loss
of potential energy of the salt stratification DS = g〈wβS〉, the gain of energy by
the temperature DT = g〈wαT 〉, and production of kinetic energy Dv = DS − DT .
Fortunately, all three components are of the same order: Numerical simulations
(Stern et al. 2001) and theoretical arguments (Schmitt 1979) suggest that the flux
ratio (3) is finite and less than unity in the limit Rρ → 1:

0 < γ0 < 1, γ0 = lim
Rρ→1

γ, (7)

and therefore DT = γ0DS , Dv = (1 − γ0)DS , and DS are comparable:

DS ∼ DT ∼ Dν. (8)

If the dissipation scale is not strongly affected by the background stratification, then
the dimensional arguments require that λT is set by the Batchelor microscale

λT ∼
(

νk2
T

DT

)1/4

. (9)

The latter is equivalent to the Kolmogorov scale for Prandtl number of order one. In
terms of the Nusselt number (Nu), (9) can be written as

λT

l
∼Nu−1/4 for Nu � 1, (10)

where l = (kT ν/(gαT̄z))
1/4 is a length scale based on the background stratification.

To test (10), we performed a series of experiments with Rρ = 1.1, 1.2, 1.3, 1.4, and 1.5
in which the diffusivity ratio was kept constant at τ = 1

3
and the Prandtl number was

Pr= 7. In each case the model was initialized from rest by a small-amplitude random
initial (T , S) distribution, on a domain of size resolved 10 × 10 fastest growing finger
wavelengths (d), and the model runs were extended into the quasi-equilibrium regime
with statistically steady integral characteristics. For each run, we use the periodically
recorded fields of temperature to construct PT (κ), which is the two-dimensional
dissipation spectrum of αT and κ =

√
k2

x + k2
z is a wavenumber. For each Rρ , the

dissipation scale (λT ) is plotted (figure 3) as a function of Nu. The dissipation scale is
determined by fitting the Batchelor (1959) dissipation spectrum to P (κ) and defining

λT =
2π

κB

(11)

where κB is the Batchelor wavenumber. The slope of the numerical λT (Nu) relation
in the logarithmic coordinates (figure 3) is consistent with the power law (10).
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Figure 3. The non-dimensional heat dissipation scale (λT / l) as a function of the Nusselt
number (Nu) in logarithmic coordinates. All data points (denoted by crosses) are aligned
along a straight line whose slope corresponds to a power law λT / l ∝ Nu−0.25.

It is also possible to refine the foregoing analysis by introducing different dissipation
scales for the individual density components. Since we expect comparable dissipation
rates for heat and salt in (2), the salt dissipation scale (λS) should differ from the
dissipation scale of heat by a factor

√
τ =

√
kS/kT :

λS =
√

τλT , (12)

yet another rather conventional prediction, consistent with all our numerical
experiments. In figure 4 we present the dissipation spectra for the Rρ = 1.2 calculation
in figure 1(b). PT (κ) and PS(κ) are the dissipation spectra of (αT , βS), normalized
by Pmax = maxk {PS(κ)}. We note the remarkably similar patterns of the T –S spectra,
which we demonstrate by renormalizing the temperature spectrum as

κ ′ = κ
√

τ , P ′
T = PT

√
τ

γRρ

, (13)

and plotting P ′
T (κ ′) in figure 4 (dashed curve). P ′

T (κ ′) is almost undistinguishable from
PS(κ) over much of the κ-range, which is consistent with the shift of the salinity
dissipation scales relative to that of temperature by a factor

√
τ , as anticipated in

(12).
As mentioned earlier, simulations reveal the abundance of compact isolated blobs

propagating vertically while roughly preserving their shape and distribution of
temperature and salinity (see figures 1, 2) – the double-diffusive modons. In order
to preserve the T –S anomalies in time, vertical advection of properties in modons
should be balanced by their molecular dissipation. In particular, w∂S̄/∂z ∼ kS∇2S,
which implies that on the modon scale, advective and dissipative terms in the
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Figure 4. The dissipation spectra of temperature (PT ) and salinity (PS) normalized by the
maximum of the salinity dissipation spectra (Pmax). The dashed curve (P ′

T ) represents the
temperature dissipation rescaled according to (13). The P ′

T (κ) and PS(κ) curves are nearly
identical.

salinity equation are comparable. Thus, we interpret double-diffusive modons as
fundamentally diffusive structures operating on the salinity microscale λS , which is
consistent with the range of scales observed in the numerical simulations (figure 1).
Indeed, on scales greatly exceeding λS , molecular diffusion is negligible and all
coherent density anomalies just oscillate about the equilibrium level. On scales much
less than λS, the perturbations are rapidly obliterated by the molecular diffusion. This
leaves only one possibility: the modon size should be comparable to λS . As far as the
dissipation of heat is concerned, we note that T -anomaly within the modon interior
is small and only slightly affects the density distribution.

On the other hand, since modons are reflected in both temperature and salinity
distributions, we anticipate that spacing between modons is set by the heat dissipation
scale λT . These conjectures are supported by the numerical experiments in figure 5,
which shows the typical instantaneous salinity fields realized for (a) τ = 1

3
and (b)

τ = 1
12

. Both experiments were performed with (Rρ, Pr) = (1.3, 7) and on a resolved
domain of size 10 × 10 fastest growing finger wavelengths. The time-mean Nusselt
number realized in the τ = 1

3
simulation was Nu =47.4 and for τ = 1

12
it increased to

Nu =82.5. The experiments in figures 5(a) and 5(b) resulted in a comparable number
of structures that we can identify as double-diffusive modons; their concentration
increased by only ∼50% for the τ = 1

12
calculation, which we attribute to its

larger Nusselt number (see (10)). However the size of individual modons changed
dramatically. The typical scale of modons in figure 5(b) is less than half of that in
figure 5(a) and it is well separated from the scale of the primary instability. The
salinity dissipation scale λS is represented by the radius of the black circle plotted
in the lower right corners of figure 5(a, b). In each experiment, the typical size of
modons is comparable to λS .
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(a)

(b)

z
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Figure 5. Instantaneous salinity fields for the experiments with (a) τ = 1
3

and (b) τ = 1
12

. In
both cases Rρ = 1.3 and Pr = 7. Red colour corresponds to high values of Sand low values
are shown in blue. Note the dramatic reduction in size of the double-diffusive modons in (b).
The radii of the black circles at the right bottom corners in (a) and (b) represent the salinity
dissipative scale (λS).

In view of their scales (R ∼ λS 	 λT ), we presume that modons account for only a
fraction of the total heat dissipation and thus for a fraction of heat flux. In contrast,
dissipation of the salinity occurs mostly on the λS scale – the scale of modons –
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and therefore it is sensible to attribute the salt flux to the action of double-diffusive
modons. Our study will consequently emphasize the modon-driven mixing of the
slower diffuser – salt. If the modon size is of the order of λS and the typical distance
from one modon to its closest neighbour is of the order of λT , then (12) implies that
the fraction of the total area (Atotal) occupied by double-diffusive modons (Amod) is
proportional to the diffusivity ratio τ :

Amod

Atotal

∝ τ. (14)

As τ decreases, modons become more and more isolated, and yet they continue to
account for the major part of salt dissipation.

Of course, the flow patterns observed in the numerical simulations (figures 1, 2, and
5) are not limited to double-diffusive modons: salt-finger convection exhibits a rich
array of more irregular and short-lived structures. Narrow filaments trailing behind
– and the sharp fronts forming ahead of – the propagating modons are ubiquitous,
and so are the larger wave-like perturbations. These less-coherent eddies may also
contribute to the overall dissipation of salt. However, it is our belief that many
gross features of double-diffusive convection can be explained by focusing exclusively
on the dynamics and transport of the double-diffusive modons. This belief will be
profitably explored in formulating, and successfully testing, the mixing model based
on the analytical solution for individual modons – a solution that we describe next.

3. The double-diffusive modon
Numerical simulations exhibit the emergence of rectilinearly propagating dipolar

structures (figure 2) and motivate a search for the corresponding analytical similarity
solutions. These solutions represent each modon as an isolated, horizontally
symmetric, circular eddy with a compact distribution of T –S in the interior. The
explicit expressions for temperature, salinity, and streamfunction are derived by
requiring the flow to be steady in the coordinate system associated with the moving
modon. We also impose the condition of no advective flux across the modon boundary.
This condition implies that the modon transports with it all fluid trapped in its interior,
analogous to that in the classical modon theory (Stern 1975a; Larichev & Reznik
1976).

3.1. Formulation

The governing equations (1) are non-dimensionalized using l = (kT υ/gαT̄z)
1/4,

kT / l, and l2/kT as the scales of length, velocity, and time respectively. The
expansion/contraction coefficients (α, β) are incorporated in (T , S), and αT̄zl is used
as the scale for both temperature and salinity perturbations, resulting in

∂T

∂t
+ J (ψ, T ) +

∂ψ

∂x
= ∇2T ,

∂S

∂t
+ J (ψ, S) +

1

Rρ

∂ψ

∂x
= τ∇2S,

∂

∂t
∇2ψ + J (ψ, ∇2ψ) = Pr

[
∂

∂x
(T − S) + ∇4ψ

]
.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(15)

The perturbation density in non-dimensional units becomes ρ = S − T .
To describe the uniformly translating structures, as observed in the numerical

simulations, we rewrite the equations of motion in a coordinate system which moves
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vertically with the speed W :

∂

∂t
→ ∂

∂t
− W

∂

∂z
, ψ → ψ + Wx, (16)

and insist that the flow field in the new coordinate system is steady:

W + J (ψ, T ) +
∂ψ

∂x
= ∇2T ,

W

Rρ

+ J (ψ, S) +
1

Rρ

∂ψ

∂x
= τ∇2S,

J (ψ, ∇2ψ) = Pr

[
∂

∂x
(T − S) + ∇4ψ

]
.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(17)

For convenience, we also use the total temperature and salinity, which includes
the contributions from the basic gradient Ttot = T + z and Stot = S + z/Rρ . This
transformation further reduces our governing equations to

W + J (ψ, Ttot) = ∇2Ttot,
W
Rρ

+ J (ψ, Stot) = τ∇2Stot,

J (ψ, ∇2ψ) = Pr

[
∂

∂x
(Ttot − Stot) + ∇4ψ

]
.

⎫⎪⎪⎬⎪⎪⎭ (18)

Since our goal is to understand the limit Rρ → 1+, we now introduce a small

parameter ε =
√

1 − R−1
ρ and search for a solution of the governing equations

by expanding (T , S, ψ) in powers of ε. Suppose that the leading-order scale of
temperature and salinity of double-diffusive modons is Ttot, Stot ∼ εq , and the typical
spatial scale of the modon is x, y ∼ εp where the exponents q and p are yet
to be determined. Thus, the dissipation of thermal variance is of the order of
DT = 〈|∇T |2〉 ∼ ε2q−2p and (10) therefore implies that εp ∼ (1/ε2q−2p)1/4; consequently
p = −q > 0. Thus, the spatial coordinates are rescaled as

x = εpx0, z = εpz0. (19)

The scale for the propagation velocity is determined by requiring W to be of the same
order as the diffusive term in the T –S equations:

W = ε−3pW0 + · · · . (20)

Our preliminary numerical simulations in § 2 suggest looking for a solution confined
to a circular region with a symmetric distribution of temperature and salinity:

Ttot = ε−pT0(r) + · · · ,
Stot = ε−pS0(r) + · · · ,

}
(21)

where, for convenience, we have switched to the polar coordinates (r, θ) such that
x0 = r cos θ and z0 = r sin θ . Anticipating the balance between the buoyancy and
viscous terms in the vorticity equation, which implies that ∇4ψ ≈ −(∂/∂x)(T −
S) ≈ ε−2p(∂/∂r)(S0 − T0) cos θ , we use the following leading-order term for the
streamfunction:

ψ = ε2pψ0(r) cos θ + · · · . (22)

Note that (22) represents the motion of particles relative to the modon, and it is much
slower than the propagation velocity of the modon itself (20). In essence, the scaling
(22) represents the variation in velocities in the modon interior, rather than their
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absolute values. While the scale separation between the propagation velocity of the
modon and the velocity variation in its interior is perhaps somewhat counterintuitive,
this feature is reflected in the numerical simulations. Figure 2(d) indicates that the
particle velocities are fairly uniform in the central part of the modon. Scaling (22)
also implies that the nonlinear terms in T –S equations (18) do not appear at their
leading (∼ ε−3p) order, which reduces these equations to

W0 =
∂2T0

∂r2
+

1

r

∂T0

∂r
,

W0 = τ

(
∂2S0

∂r2
+

1

r

∂S0

∂r

)
.

⎫⎪⎪⎬⎪⎪⎭ (23)

Since the propagation velocity is likely to be affected by the external drag force, it
also becomes necessary to specify the response of the exterior to the motion of the
double-diffusive modon. The theory of propagation through a surrounding viscous
fluid has a long and distinguished history (see Schlichting & Gersten 2000). While
details are still debated, it is generally accepted that the drag force acting on a blunt
solid object moving through a motionless viscous fluid is controlled by the Reynolds
number Re = W ∗ R∗/υ , where W ∗ is the dimensional propagation velocity and R∗ is
the spatial scale. When the Reynolds number is small, the external force is dominated
by the frictional drag, which is proportional to the speed of the object. For large
Reynolds numbers, the pressure (form) drag becomes more significant and the external
force is proportional to the velocity squared. Of course, the double-diffusive problem
contains many ingredients that are absent in the classical solid-body propagation
theory. The modon interior is not rigid and the diffusion of heat and salt across its
boundary adds another element of complexity. Nevertheless, it is sensible to assume
from the outset that the drag laws realized for blunt solid objects are relevant for
double-diffusive modons as well.

The Reynolds number based on the modon propagation velocity is large – in our
non-dimensional units Re = WR/Pr, and in view of (19) and (20) Re ∼ ε−2p � 1.† For
the modon in figure 2, we have explicitly computed the form (Fp) and viscous (Fν)
drag components and found that Fp/Fν = 2.83. Therefore, we adopt the quadratic
drag law:

F = CW 2, (24)

and the following theory can be readily reproduced for other forms of F , should such
be proposed for double-diffusive modons. The coefficient C in (24) depends on the
modon size and on the pattern of exterior motion, both of which are determined by
the background density ratio. Even the shape of modons in the numerical simulations,
but not in the theory, may be affected by the background density ratio. Therefore we
anticipate that C in (24) is related to Rρ in some, yet unspecified, manner: C = C(Rρ).
Since the propagation velocity does not vary in time, the drag experienced by the
modon is balanced by its buoyancy – the Archimedes force measuring the excess

† The Reynolds number based on the propagation speed, which is used here for selection of the
drag law, should be clearly distinguished from the Reynolds number based on the scale of the interior
particle velocities relative to the moving modon. Note that the modons are dissipative structures
and therefore the Reynolds and Péclet numbers based on the interior velocity are necessarily of
order one. This interior Reynolds number, however, is irrelevant for the estimate of the external
drag force.
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weight of the modon with respect to the background density, and therefore∫ ∫
r<R

(S − T ) dx dy = −CW 2. (25)

Equation (25) connects the interior and exterior dynamics and makes it possible to
close the problem and to determine the basic characteristics of the double-diffusive
modons as a function of Rρ . In order to make (25) consistent with the scaling in
(19)–(21), we require that

C = C0ε
7p. (26)

Our purpose here is to represent the configuration with finite temperature and
salinity confined to a circular area r <R, outside which our solution decreases to zero.
However, before presenting specific solutions, we note that our governing equations
(18) are invariant under the transformation:

(x0, z0) → R(x0, z0), (u, w) → 1

R
(u, w), ψ → ψ,

(Ttot, Stot) → 1

R3
(Ttot, Stot), W → 1

R5
W.

⎫⎪⎬⎪⎭ (27)

Thus, we can, without loss of generality, consider only the reference case of a double-
diffusive modon with rescaled radius of unity and determine its vertical speed (W ).
The propagation velocity of a modon with arbitrary radius R will be determined by
dividing the reference value W by R5.

3.2. Nonlinear asymptotic expansion

For the modon of unit radius, (23) requires the following zero-order T –S fields:

T0 =
W0

4
(r2 − 1)

S0 =
W0

4τ
(r2 − 1)

⎫⎪⎬⎪⎭ for r < 1. (28)

The leading-order (∼ε−2p) balance of the vorticity equation yields

0 =
∂

∂r
(T0 − S0) +

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)2

ψ0. (29)

Equation (29) is solved by introducing the vorticity ζ = ∇2ψ , whose zero-order
component ς0 cos(θ) satisfies

ς0 =

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ψ0.

To determine ς0, it becomes necessary to specify the boundary conditions; these are
introduced by insisting that the vorticity has no singularities in the interior and that
it reduces to zero at the boundary of the modon (r = 1):

ς0 =
W0

16

(
1

τ
− 1

)
r[r2 − 1]. (30)

From (30) we similarly compute the zero-order streamfunction:

ψ0 =
W0

384

(
1

τ
− 1

)
r[r2 − 1][r2 − 2]. (31)
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The nonlinear interaction of the leading-order terms ((21) and (22)) in the advection–
diffusion equations (18) generates T –S modes proportional to sin θ:

Ttot = ε−pT0(r) + εpT1(r) sin θ + · · · ,
Stot = ε−pS0(r) + εpS1(r) sin θ + · · · ,

}
(32)

and the nonlinearity of the vorticity equation (18) generates a streamfunction mode
proportional to sin 2θ:

ψ = ε2pψ0(r) cos θ + ε4pψ1(r) sin 2θ + · · · . (33)

Collecting the first-order terms of the advection–diffusion equations (∼ε−p) and of
the vorticity equation (∼1), we arrive at

ψ0

r

∂T0

∂r
=

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
T1,

ψ0

r

∂S0

∂r
= τ

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
S1,

ψ0

r

∂ς0

∂r
− ∂ψ0

∂r

ς0

r
= Pr

[
∂(T1 − S1)

∂r
− T1 − S1

r
+ 2

(
∂2

∂r2
+

1

r

∂

∂r
− 4

r2

)2

ψ1

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(34)

The nonlinear interaction of the zero- and first-order terms (32) and (33) in
the advection–diffusion equations (18) generates two types of T –S modes: those
proportional to cos 2θ and those independent of θ ,

Ttot = ε−pT0(r) + εpT1(r) sin θ + ε3pT20(r) + ε3pT22(r) cos 2θ + · · · ,
Stot = ε−pS0(r) + εpS1(r) sin θ + ε3pS20(r) + ε3pS22(r) cos 2θ + · · · .

}
(35)

The nonlinear interaction of the zero- and first-order terms in the vorticity equation
also generates two types of terms – modes proportional to cos θ and cos 3θ:

ψ = ε2pψ0(r) cos θ + ε4pψ1(r) sin 2θ + ε6pψ21(r) cos θ + ε6pψ23(r) cos 3θ + · · · . (36)

Next, we collect the second-order (∼εp)θ-independent terms of the T –S equations.
The spatially uniform terms W and W/Rρ in (18), associated with vertical translation
of the double-diffusive modon, are also taken into account and expanded as follows:

W = ε−3pW0 + εpW2,

W/Rρ = W (1 − ε2) = ε−3pW0 − ε−3p+2W0 + εpW2 − εp+2W2.

}
(37)

In constructing the modon solution, we insist that the background density gradient
(the ε−3p+2W0 term) explicitly influences only the high-order terms. Thus, our second-
order equations become

W2 + NT 2 =

(
∂2

∂r2
+

1

r

∂

∂r

)
T20,

W2 + NS2 = τ

(
∂2

∂r2
+

1

r

∂

∂r

)
S20,

Nψ2 = Pr

[
∂(T20 − S20)

∂r
+

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)2

ψ21

]
,∫ 1

0

(S20 − T20)r dr = −C0

2π
2W0W2 =

2W2

W0

∫ 1

0

(S0 − T0)r dr,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(38)
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where the nonlinear terms (NT , NS, Nψ ) are

NT 2 =
1

2

(
∂ψ0

∂r

T1

r
+

ψ0

r

∂T1

∂r

)
,

NS2 =
1

2

(
∂ψ0

∂r

S1

r
+

ψ0

r

∂S1

∂r

)
,

Nψ2 =
∂ψ0

∂r

ς1

r
+

1

2

ψ0

r

∂ς1

∂r
− 1

2

∂ψ1

∂r

ς0

r
− ψ1

r

∂ς0

∂r
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(39)

and

ς1 =

(
∂2

∂r2
+

1

r

∂

∂r
− 4

r2

)
ψ1.

A similar set of second-order equations arises for T22, S22, and ψ23.
Next, power series in (35) and (36) are substituted into the governing equations (18)

and (25), terms of the same order collected, and the resulting equations are solved
for T0, T1, T20, T22, S0, S1, S20, S22, ψ0, ψ1, ψ21, ψ23, W2. For instance, the expression for
W2 is given by

W2 = − 11

110100480

τ 4 − τ 3 − τ + 1

τ 4
W 3

0 , (40)

implying that the nonlinear correction to the propagation velocity opposes its zero-
order component, a feature that could be expected on physical grounds. Indeed, the
nonlinearity in the T –S equations represents the advection of temperature and salinity
in the interior of the modon, which accelerates the exchange of properties – from the
modon boundary (r =1), where T = S = 0, to its centre (r = 0), where T and S are
maximal. The nonlinear advective transfer tends to reduce the density anomaly of the
modon and thereby also reduces the buoyant force (25). Thus, steady-state translation
is possible only if the amplitude of the propagation velocity decreases accordingly, as
reflected in (40). Note that the appearance of this small correction to the propagation
velocity (the W2 term) is a direct and inevitable consequence of the model dynamics.
In the stationary coordinate system, inclusion of the small-amplitude propagation
velocity component is equivalent to allowing the slow time scale into the problem and
rescaling the time variable as t = ε4pt0 + t2.

It should be emphasized that, although the foregoing expansion (which spans
orders 0–2 in ε) is nonlinear, the resulting solutions can be found for any value of
the propagation velocity W0 and any positive exponent p. In order to determine their
unique preferred values, we now extend our asymptotics to even higher orders.

Extending the power series (35) and (36) to the third and fourth orders, we arrive
at

Ttot = ε−pT0(r) + εpT1(r) sin θ + ε3pT20(r) + ε3pT22(r) cos 2θ + ε5pT31(r) sin θ

+ ε5pT33(r) sin 3θ + ε7pT40(r) + · · · ,
Stot = ε−pS0(r) + εpS1(r) sin θ + ε3pS20(r) + ε3pS22(r) cos 2θ

+ ε5pS31(r) sin θ + ε5pS33(r) sin 3θ + ε7pS40(r) + · · · ,
ψ = ε2pψ0(r) cos θ + ε4pψ1(r) sin 2θ + ε6pψ21(r) cos θ + ε6pψ23(r) cos 3θ

+ ε8pψ32(r) sin 2θ + ε8pψ34(r) sin 4θ + ε10pψ41(r) cos θ + · · · ,
W = ε−3pW0 + εpW2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(41)

As previously, power series in (41) are substituted into the governing equations
(18) and (25), terms of the same order collected, and the resulting equations are
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solved sequentially. At the fourth-order (∼ ε5p) balance of the salinity equation, we
also include the ε−3p+2W0 term in (37) representing the influence of the background
density ratio, which determines a unique value of the exponent p in (41):

p = 1
4
. (42)

Attention is now focused on the fourth-order balance of the T –S equations,
particularly on its θ-independent harmonic:

NT 4 =

(
∂2

∂r2
+

1

r

∂

∂r

)
T40,

−W0 + NS4 = τ

(
∂2

∂r2
+

1

r

∂

∂r

)
S40,

⎫⎪⎪⎬⎪⎪⎭ (43)

where

NT 4 =
1

2r

∂(ψ0T31 + ψ21T1 − 2ψ1T22)

∂r
,

NS4 =
1

2r

∂(ψ0S31 + ψ21S1 − 2ψ1S22)

∂r
.

⎫⎪⎬⎪⎭ (44)

At this point we also make use of the buoyancy–drag balance equation (25), whose
fourth-order component yields∫ 1

0

(S40 − T40)r dr = −C0W
2
2 =

W 2
2

W 2
0

∫ 1

0

(S0 − T0)r dr. (45)

Solving (43) for (T40, S40) and substituting the result in (45) we finally arrive at the
equation sought for W0:

AW 4
0 = B, (46)

where A is given by

A = [(2164832Pr + 181959784Pr2 + 127714)τ 9 + (−6494496Pr − 510856

− 623552288Pr2)τ 8 + (766284 + 4329664Pr + 791141276Pr2)τ 7 + (−498997

− 605669528Pr2 + 2590252Pr)τ 6 + (−1350536Pr + 80278 + 584155152Pr2)τ 5

+ (71154 − 505281128Pr2 − 1016888Pr)τ 4 + (−3924480Pr − 47436

+ 237325164Pr2)τ 3 + (−141852280Pr2 + 5515340Pr + 11859)τ 2

+ (118886304Pr2 − 1813688Pr)τ − 37112456Pr2]/

(31106318645782904832000Pr2τ 9), (47)

and

B = − 1

16τ
. (48)

While (47) seems hopelessly awkward at first, it can be cast in a manageable and
physically transparent form by considering the τ 	 1 limit of the foregoing theory.
Thus, in § 4 we will develop simple explicit solutions based on the truncated power
series in ε and τ .

3.3. Physical interpretation

The individual components of the proposed asymptotic ε-expansion for τ = 1
3

and
Pr= 7 are shown in figure 6. The structure of the equilibrium solution can be physically
interpreted by focusing on salinity (S), which controls the density distribution in the
modon interior. Consider an upward-propagating modon with relatively fresh and
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S0(r)

S1(r)sin(θ)

S20(r)+S22(r)cos(2θ)

S31(r)sin(θ)+S32(r)sin(3θ)

ψ0(r) cos(θ)

ψ1(r)sin(2θ)

ψ21(r)cos(θ)+ψ23cos(3θ)

ψ32(r)sin(2θ)+ψ34(r)sin(4θ)

(a) Zero order

(b) First order

(c) Second order

(d) Third order

z

z

z

z

x x

Figure 6. The asymptotic solution representing the upward-propagating modon for τ = 1
3

and Pr = 7. Presented are four leading terms of theε-expansion (41) for the salinity (left
column) and streamfunction (right). Red colour corresponds to positive values and negative
values are shown in blue.

cold fluid inside (W > 0, S < 0). We insist that the governing equations are balanced
at all orders in ε. The direct effect of increasing the density ratio above unity (finite
ε) would be to reduce the salinity advection term (WS̄z). Indeed, if the temperature
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stratification and propagation velocity were fixed, larger density ratio would mean
lower background salinity gradient (S̄z = T̄zR

−1
ρ = R−1

ρ ) and thus lower mean advection

term [WS̄z =WT̄z − W (1 − R−1
ρ )]. What can balance this (weak) tendency in the

salinity equation

−W
(
1 − R−1

ρ

)
< 0 (49)

associated with the increase in Rρ above unity? Another key question is at what order
in the ε-expansion can term (49) be balanced.

As indicated by the zero-order salinity distribution (figure 6a, left) density is lowest
at the modon centre. An inhomogeneous density distribution drives the dipolar
circulation, with light particles in the central part rising faster than the heavy particles
near the edge, which is reflected in the pattern of the zero-order streamfunction (fig-
ure 6a, right). The induced circulation mixes salinity and thus tends to decrease the
salinity amplitude in the modon. Since both processes – advective interior mixing and
the background stratification effect (49) – act in the same sense, it is clear that the
equilibration cannot be achieved through a simple balance between the variation of a
governing parameter (Rρ in our case) and the leading-order nonlinearity (cf. Malkus
& Veronis 1948). Instead, we are forced to delay the inclusion of this S̄z effect to an
even higher order in our ε-expansion. Note that, so far, solutions of any strength
could be found.

Since nonlinearity adversely affects the salinity amplitude – the second-order salinity
opposes that at the zero order, it is not surprising that the streamfunction follows
the same pattern: the second-order streamfunction pattern (figure 6c, left) opposes
the zero-order streamfunction (figure 6a, left). Likewise, the third-order circulation
pattern (fourth row, left column in figure 6) is anti-correlated with the first-order
pattern (figure 6b, left). The resulting reduction in circulation strength, hence the
reduction in the advective mixing between the modon boundary and the centre,
means that the nonlinearity at the fourth order of the salinity equation acts as to
increase the salinity amplitude. That leads to a very attractive opportunity to close
the circulation problem at the fourth order. At this level, the nonlinearity counteracts
the background stratification term (49), calling for its inclusion in the fourth-order
balance and, ultimately, results in a unique solution. And indeed, as shown above,
consideration of the fourth-order balances makes it possible to form the amplitude
equation (46) by sequentially eliminating the higher-order terms in favour of the
lower-order components, eventually arriving at the explicit expression for W0.

Since the foregoing theory was developed for modon of unit radius, to reconstruct
the general solution it only remains to rescale our variables using (27). The numerical
simulations and theoretical considerations in § 2 suggest that the scale of double-
diffusive modons is set by the salinity dissipation scale λS , which is proportional to√

τ . Thus, we arrive at explicit predictions for the actual propagation velocity and
the T –S amplitudes (denoted by a tilde) in double-diffusive modons:

W̃ ∝ W

τ 2.5
, T̃ ∝ Ttot

τ 1.5
, S̃ ∝ Stot

τ 1.5
. (50)

4. Large-scale implications
4.1. The modon flux model

In this section, we formulate the physically motivated laws for the vertical transport of
heat and salt as a function of large-scale T –S gradients. Based on considerations in § 2,
we attribute the vertical salt flux to the exchange of fluid by double-diffusive modons,
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whereas for heat, owing to its higher molecular diffusivity, mixing can also be driven
by short-lived and less-coherent structures. Thus, the salt flux (FS) is determined by
the salt anomaly of the modons, their propagation velocity, and concentration:

FS ∝ Amod

Atotal

W̃ 〈S̃〉, (51)

where angle brackets denote the spatial average over the modon area. Recalling that
the fraction of area occupied by modons (Amod/Atotal) was assumed (see (14)) to be
proportional to τ , we reduce (51) to

FS ∝ τW̃ 〈S̃〉. (52)

Combining (41), (42), (50), and (52), we write down the two leading terms of the
asymptotic ε-expansion for the salt flux:

FS ∝ F0ε
−1 + F2 + · · · , (53)

where

F0 =
W0〈S0〉

τ 3
,

F2 =
W2〈S0〉 + W0〈S20〉

τ 3
.

⎫⎪⎬⎪⎭ (54)

Since (W0, W2, S0, S20) are readily available from the foregoing asymptotic theory
(§ 3), we arrive at the explicit prediction for the velocity of modons and their salt flux
FS:

|W̃ | ≈ k1

(
ε−3/4 + C1ε

1/4
)
, (55)

and (53), (54) similarly yield:

|FS | ≈ k2(−ε−1 + C2), (56)

where k1 ∝ 1/
√

τ and k2 is an order-one constant. The constants C1 and C2 can be
evaluated for each (τ, Pr). Thus, for (τ, Pr) = (1

3
7), our model predicts C1 = −0.94

and C2 = −2.55. For smaller values of the diffusivity ratio, we compute C1 and C2

by taking the τ → 0 limit in all equations leading to (55) and (56), in which case we
arrive (for Pr =7) at C1 = −0.72 and C2 = −2.17.

Next, we compare the theoretical predictions (55) and (56) with direct numerical
simulations over a range of τ and Rρ (in all cases Pr= 7). All the experiments were
performed on the computational domain corresponding to 10×10 fastest growing
finger wavelengths (d), which was resolved by a uniform mesh with (Nx × Nz) =
(1024 × 1024) elements. These numerical experiments are summarized in table 1
and the resulting equilibrium fluxes are consistent with earlier studies (e.g. Stern &
Simeonov 2005). Thus, our modon flux model can be viewed as an attempt to explain
these numerical results from first principles.

4.2. Dependence on the density ratio

In order to test the prediction (55) and (56), we turn to the subset of experiments in
table 1 with τ = 1

3
(Rρ = 1.1, 1.2, 1.3, 1.4, and 1.5) and examine how the intensity of

salt fingering varies with Rρ . To test (55), we assume that the propagation velocity
of modons is comparable to the average (RMS) vertical velocity. This assumption
is reasonable for order-one values of the diffusivity ratio, in which case the modons
occupy a substantial fraction of the total area of the computational domain (see the
discussion in § 2) and their propagation velocities may control the average vertical
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τ = 1
3

τ = 1
6

τ = 1
12

τ = 1
24

τ = 1
48

Rρ = 1.1 |FS | 171.0 294.0
|FT | 147.0 231.0
γ 0.858 0.784

Rρ = 1.2 |FS | 89.4 141.0 160.0 180.0 197.0
|FT | 75.3 111.0 118.0 128.0 137.0
γ 0.842 0.787 0.739 0.711 0.695

Rρ = 1.3 |FS | 56.6 87.7 113.0 123.0 141.0
|FT | 47.4 67.3 81.6 84.2 94.8
γ 0.837 0.767 0.723 0.685 0.673

Rρ = 1.4 |FS | 37.0 79.5
|FT | 30.8 56.2
γ 0.833 0.707

Rρ = 1.5 |FS | 26.4 61.3
|FT | 21.9 42.8
γ 0.832 0.698

Table 1. Summary of the numerical experiments. Each experiment was performed with the
computational domain corresponding to 10×10 fastest growing finger wavelengths, resolved
by (Nx ×Nz) = (1024×1024) elements, and the Prandtl number is Pr = 7. In each cell, the first
number is the equilibrium non-dimensional salt flux, the second number is the non-dimensional
heat flux (the Nusselt number), and the third number represents the flux ratio γ .

velocity wRMS. Note that the situation could be very different for τ 	 1, when modons
are relatively small and their motion may not contribute much to wRMS. For each run,
the vertical RMS velocity is plotted as a function of 1/ε in figure 7. The dependence of
wRMS on ε is consistent with (55): in figure 5 we also plot the best fit of the numerical
data wRMS(ε) to the theoretical profile k1(ε

−0.75 + C1ε
0.25) with k1, C1 as parameters.

The fitted profile (solid curve) describes the raw data (plus signs) exceptionally well.
The best fit approximates the numerical data as

wRMS = 7.33(ε−0.75 − 1.22ε0.25). (57)

It is interesting to note that the asymptotic expression (55) predicts C1 = −0.94 for
τ = 1

3
, which is not very different from the numerical value of C1 = −1.22 in (57).

This result indicates that the theoretical model offers a fair estimate even for the
weak effects that are high order in ε.

Figure 8(a) presents the average non-dimensional salt flux (FS) as a function of 1/ε

for the foregoing (figure 7) numerical experiments. The numerical FS(ε) dependence
conforms to the pattern (56) suggested by the formal asymptotic expansion. In
figure 8(a) we also show the best fit of the numerical data FS(ε) to the theoretical
profile k2(ε

−1 + C2) with k2, C2 as parameters. Apparently, the fitted profile (solid
straight line) describes the raw data (denoted by plus signs) exceptionally well. The
best fit approximates the numerical data as

|FS | = 91.1(ε−1 − 1.46). (58)

The difference between C2 = −2.55 predicted by the asymptotic expression in (56) for
τ = 1

3
and the numerical value of C2 = −1.46 in (58) can be readily attributed to the

numerous idealizations of the theoretical model. These include the perfectly circular
shape of modons, their rectilinear pattern of motion, disregard of modon–modon
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Figure 7. The vertical (RMS) velocity, averaged in space and time, as a function of

1/ε = 1/
√

1 − R−1
ρ for (τ,Pr) = ( 1

3
, 7). The numerical data, denoted by plus signs, follow

the theoretical pattern (solid curve) predicted for the speed of double-diffusive modons.
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Figure 8. Comparison of the theoretical expression for the non-dimensional salt flux (FS) as

a function of 1/ε = 1/
√

1 − R−1
ρ with the results of numerical experiments for (a) τ = 1

3
and

(b) τ = 1
12

. The two leading-order terms in the asymptotic ε → 0 expansion correspond to the

linear relation (56) between FS and ε−1, and the distribution of the numerical data (plus signs)
is well represented by straight lines, both in (a) and (b).

collision effects, and the asymptotically small ε. Fitting the three-term (rather than
two-term) series to the numerical data also improves the data/theory agreement by
raising the coefficient C2 to −1.78.
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Figure 9. Comparison of the theoretical expression for the non-dimensional salt flux (FS) as
a function of τ with the results of numerical experiments for (a) Rρ =1.2 and (b) Rρ = 1.3.
The two leading-order terms in the asymptotic τ → 0 expansion for FS correspond to the linear
relation (60) between FS and τ . The distribution of the numerical data (plus signs) is well
represented by straight lines with the coefficient of –1.6 in the τ -term (see (60)), both in (a)
and (b).

It is of interest to test our theoretical predictions for different values of the diffusivity
ratio. Therefore we turn to the experiments in table 1 with τ = 1

12
. The numerical

values of FS are plotted as a function of ε−1 in figure 8(b). Although the magnitude
of fluxes increases considerably relative to that in figure 8(a), their dependence on
the density ratio is still accurately captured by the expression (56). The best fit of the
numerical data (plus signs) by the theoretical profile k2(ε

−1 + C2) is indicated by the
straight line, which approximates fluxes as

|FS | = 146(ε−1 − 1.32). (59)

4.3. Dependence on the diffusivity ratio

The theoretical model predicts the convergence of the salt flux to a finite value in
the limit τ → 0. To be more explicit in describing the flux pattern for small finite
diffusivity ratios, we focus on the leading-order term of our ε-expansion in (53):
FS ∝ F0ε

−1. Using (10), (28), (47), (48), and (54), we evaluate the two leading terms
of the Taylor expansion of F0 in τ , which (for Pr =7) yields

|FS | ≈ K(1 − 1.6τ ) + O(τ 2), (60)

where K(ε) is the salt flux at τ → 0. Equation (60), for instance, implies that the
decrease of diffusivity ratio from τ = 1

3
towards zero should be accompanied by an

almost twofold increase in flux. To test the prediction in (60) we performed a series
of experiments with diffusivity ratios of τ = 1

3
, 1

6
, 1

12
, 1

24
, 1

48
and (Rρ, Pr) = (1.2, 7).

The numerical salt fluxes are plotted as a function of τ in figure 9(a). Apparently,
the FS(τ ) pattern is adequately captured by the asymptotic relation (60). Numerical
points (plus signs in figure 9a) are distributed along the line with slope consistent with
the coefficient –1.6 in (60). The theoretical relation FS = K(1 − 1.6τ ) with K = 190 is
also shown in figure 9(a). In figure 9(b), the same diagnostics are applied to a set of
experiments with Rρ = 1.3. We plot the numerical values for FS(τ ),denoted by plus
signs, along with the asymptotic (τ 	 1) relation FS = K(1 − 1.6τ )with K =135 (solid
line). Their apparent agreement once again supports the proposed modon flux laws.
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Figure 10. Flux ratio γ as function of density ratio for (a) τ = 1
3

and (b) τ = 1
12

. Plus
signs denote the numerical experiments summarized in table 1 and the solid curves represent
Schmitt’s (1979) fastest growing finger model.

Finally, we note that from the foregoing salt flux model it is straightforward to
calculate the heat flux and the kinetic energy dissipation rate:

FT = γFS, Dv = (1 − γ )FS, (61)

where γ is the flux ratio. The flux ratio is a fairly stable characteristic of salt-finger
convection; its typical values and dependences are adequately explained by the linear
stability considerations. In figure 10, we plot our numerical data for γ (Rρ), denoted
by plus signs, along with the flux ratio of the linearly fastest growing finger model
(Schmitt 1979). While numerical values are slightly offset from the theoretical curve
towards larger γ , these results indicate that Schmitt’s model remains surprisingly
accurate in predicting the flux ratio even in the strongly nonlinear low-Rρ regime. As
discussed earlier (§ 2), the transport characteristics of double-diffusive modons place
the nonlinear constraint on the flux of the slower diffuser (S), whereas the rate of
the T -flux is set by the balances operating on the forcing scale – the linearly fastest
growing finger width.

5. Conclusions
Traditionally, most theoretical models of salt fingers (e.g. Schmitt 1979; Radko &

Stern 2000; Stern & Simeonov 2005) sought the solutions representing long vertically
oriented finger-like structures. While tall narrow salt fingers can be realized at high
density ratios (Rρ), the laboratory, field, and numerical experiments indicate that tall
structures cannot survive when the density ratio is sufficiently low. For instance, Taylor
(1993) investigated the anisotropy of salt fingers in the laboratory and suggested that
the fully developed salt fingers could be considered roughly isotropic for Rρ < 5,
noting that the finger aspect ratio tends to approach unity for Rρ → 1. These results
are consistent with the in situ oceanic measurements of salt fingers by a horizontally
towed device (Lueck 1987). Lueck found very little coherence between the temperature
records of two sensors vertically separated by 6 cm – a distance comparable to the
dominant scale of primary salt-finger instability at that location. This lack of vertical
coherence casts doubt on the relevance of models which picture salt fingers as tall
and vertically oriented.
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The two-dimensional numerical simulations reveal that at low density ratios, tall
fingers are replaced by coherent dipolar eddies – the double-diffusive modons – which
move vertically while roughly preserving their structure and temperature/salinity
anomalies. In this paper we argue that the exchange of fluid by double-diffusive
modons controls the vertical mixing of heat and salt. The flow pattern in double-
diffusive modons and their terminal velocities are explained using an asymptotic

expansion in which the parameter ε =
√

1 − R−1
ρ is small. This analytical solution

is the basis of a phenomenological mixing model in which salt finger convection is
represented by an array of vertically translating double-diffusive modons. The theory
predicts that, at the leading order, the eddy heat/salt fluxes are linearly related to
ε−1:

(FT , FS) ∝ 1√
1 − R−1

ρ

, (62)

and that the proportionality coefficients are only weakly dependent on the diffusivity
ratio (τ = kS/kT ), as long as τ 	 1. The proposed mixing model is successfully tested
by direct numerical simulations.

While this paper is focused on the salt-finger case, we expect to find, and describe
analytically, double-diffusive modons in fully developed diffusive convection, cold
fresh fluid above warm and salty. In diffusive convection, the search might be focused
on the vertically oscillating (rather than the rectilinearly propagating) structures. We
are equally optimistic with regard to the prospects of extending our theory and
modelling to three dimensions, where we anticipate the appearance of axisymmetric
translating rings – three-dimensional counterparts of the double-diffusive modons.
Although the coefficients of the resulting flux–gradient laws may vary considerably
with the particular double-diffusive regime and the number of spatial dimensions, we
speculate that the scaling laws formulated herein are of broader relevance.

The author thanks William Merryfield, Ray Schmitt, Melvin Stern, and reviewers
for helpful comments. Support of the National Science Foundation (grant OCE
0547650) is gratefully acknowledged.
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